Abstract

Objective: Allergic rhinoconjunctivitis, sinusitis and asthma are common diseases and often coexist in an interdependent nature in the same patient. They have similar anatomic, physiologic and immunopathologic features and share the same immune inflammatory triggers and modes of treatment. Mast cells, Th2 cells, eosinophils, cytokines, IgE and other inflammatory constituents contribute to the mechanisms associated with the allergic responses that link these clinical disorders. This article reviews the studies linking these clinical entities and examines the evidence suggesting a continuum.

Data Sources: A MEDLINE search of the last 10 years was conducted.

Allergic rhinitis for example is frequently associated with bronchial hyperresponsiveness and this inter-relationship is evident from epidemiologic, pathophysiologic, and clinical studies which are reviewed in this article.

Results: The recognition of the continuum of similarly-involved pathologic features present in the allergic ocular, nasal and sinus network and the lungs has led to the introduction of new terms such as rhinosinusitis and allergic rhinobronchitis. Rhinitis is therefore a risk factor for the development of asthma.

Conclusions: Upper and lower allergic respiratory diseases constitute an important global health problem and a progressive increase in their frequency in the modern world has been seen in recent years. Recognition of their commonality as different manifestations of one disease entity will ultimately improve the diagnosis and management of patients with these common disorders.

Introduction

Allergic rhinitis, conjunctivitis, sinusitis and asthma are among the most common clinical entities which present to the allergist-immunologist. Although at first impression they appear to be separate and distinct entities, there is increasing evidence to suggest that they may represent different manifestations of a single disease. Moreover, coexistent and interdependent anatomic, physiologic and immunopathologic features and mechanisms underlie these clinical disorders. For example, they not only have common immune inflammatory triggers and similar therapeutic approaches, but also epidemiologic and clinical studies have provided further evidence for an interrelationship. Histologically, the upper and lower airways are lined, and linked, by a common respiratory epithelium. Physiologically, they are joined by the nasobronchial reflex, pathologically, by similar early-and late-phase allergic responses throughout the airways and immunologically by a common systemic and mucosal immunologic response to aeroallergens characterized by IgE antibody production. Uncontrolled rhinitis may be associated with worsening of coexisting asthma, and effective treatment of allergic rhinitis usually improves the associated asthma. The key to managing both entities, therefore, is prevention and relief of chronic allergic inflammatory changes in both the upper and lower airways.

A new term “allergic rhinobronchitis” has been proposed to describe this relationship. Allergic rhinitis and associated conditions such as chronic sinusitis and allergic asthma should be seen as a single condition affecting the entire airways that have a common respiratory epithelium. Physiologically, they are joined by the nasobronchial reflex, pathologically, by similar early-and late-phase allergic responses throughout the airways and immunologically by a common systemic and mucosal immunologic response to aeroallergens characterized by IgE antibody production. Uncontrolled rhinitis may be associated with worsening of coexisting asthma, and effective treatment of allergic rhinitis usually improves the associated asthma. The key to managing both entities, therefore, is prevention and relief of chronic allergic inflammatory changes in both the upper and lower airways.

Asthma, rhinosinusitis and rhinoconjunctivitis: evidence of linked immunopathogenesis

Sinusitis is a common chronic illness with a marked health care impact. Chronic hyperplastic sinusitis with nasal polyposis present significant inflammation which includes the presence of eosinophils and IL-5 producing T lymphocytes. The coexistence of asthma and rhinosinusitis has been noted for more than 70 years. Compiling evidence supports the relationship of sinusitis and asthma. Whether rhinosinusitis is a precipitating factor of asthma is still an issue of debate. Current data link rhinosinusitis and asthma by a common and complex inflammatory process. Eosinophils and the airway epithelium play a major role in this immunopathogenesis. Extensive sinonasal disease is a risk for the occurrence of allergic asthma. Peripheral eosinophilia in rhinosinusitis correlates with severe and extensive disease. Corti-costeroid-dependent asthmatics usually have abnormal sinus computed tomography. There is a correlation among abnormal sinus tomographic findings, clinical symptoms and the absolute number of blood eosinophils. As previously described, upper and lower respiratory diseases, (asthma, sinusitis, and otitis media with effusion) frequently complicate allergic rhinitis. The pathophysiologic link between allergic rhinitis and sinusitis includes inflammation caused by nasal allergy and/or viral infections leading to obstruction, fluid accumulation and bacterial infection. Persistent inflammatory changes cause mucosal damage and a chronic state of associated obstruction and infection. Acute disease can then become chronic. Diagnosis and pro-phylactically treating nasal allergies may prevent recurrence and improve therapeutic responses. An association between allergic rhinitis and conditions including asthma, sinusitis, otitis media, nasal polyposis, respiratory infections, and even orthodontic malocclusions has been documented. Shared pathogenic mechanisms, epidemiologic studies and clinical findings indicate that these conditions represent immunopathological consequences of the complex inflammation observed in allergic patients. Global anti-allergic treatment affects both the upper and the lower airways. The use of nasal corticosteroids in subjects with rhinitis and asthma reduces not only rhinitis symptoms but also asthma symptoms and decreases the nonspecific bronchial airway reactivity to methacholine. Similarly antihistamines improve the pulmonary function tests of these patients. In the treatment of acute sinusitis, the combination of intranasal topical corticosteroids and antibiotics provides greater benefit than the use of antibiotics alone. The increased prevalence of IgE-mediated diseases requires effective and aggressive treatment including appropriate pharmaceuticals, al-lergen avoidance and specific and potent allergy immunotherapy. There is a consistent observation in many patients that control of asthma remains difficult when their sinus disease is not treated and appropriate treatment of their sinususes frequently results in improvement of their asthma. The data of Blair et al do not only provide evidence supporting the relationship between atopy and infection but also that allergic inflammation enhances bacterial sinusitis explaining therefore the development of sinusitis in patients with allergic rhinitis. The radiographic abnor-nal findings observed in the sinuses of asthmatics probably are not artifacts but rather reflect pathologic changes. Eosinophilic infiltration with major basic protein deposition in the sinus tissues is commonly seen in patients with both sinusitis and asthma. Eosinophils may impair cilia, promoting stasis of secretions and sinus ostial obstruction, leading to secondary infections.
bacterial infections. Medical and surgical treatments of sinusitis can improve coexistent asthma, suggesting that sinusitis can exacerbate asthma. Sinus inflammation exacerbates bronchial responsiveness through trigeminal afferents and vagal efferents and may in-directly worsen asthma by enhancing nasal obstruction, causing loss of inspired air filtration, humidification, and warming.

Table 1 - Various Linkages of the “United Airways”

<table>
<thead>
<tr>
<th>Clinical entity</th>
<th>Anatomic</th>
<th>Physiologic</th>
<th>Immunopathologic</th>
<th>Therapeutic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic rhinitis</td>
<td>Respiratory epithelium</td>
<td>Inflammation, congestion and obstruction</td>
<td>IgE-mediated inflammation</td>
<td>Relief of inflammation and congestion</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>Respiratory epithelium</td>
<td>Inflammation, congestion</td>
<td>IgE-mediated inflammation</td>
<td>Relief of inflammation</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Respiratory epithelium</td>
<td>Inflammation, congestion and obstruction</td>
<td>IgE-mediated inflammation</td>
<td>Relief of obstruction and treatment of infection</td>
</tr>
<tr>
<td>Asthma</td>
<td>Respiratory epithelium</td>
<td>Inflammation, congestion and obstruction</td>
<td>IgE-mediated inflammation</td>
<td>Control obstruction and relieve inflammation</td>
</tr>
</tbody>
</table>

Allergic ocular diseases are often associated with seasonal allergic rhinitis. Allergic conjunctivitis is part of the hay fever syndrome. Atopic subjects frequently present allergic rhinoconjunctivitis, atopic keratoconjunctivitis, vernal keratoconjunctivitis, giant papillary conjunctivitis and ocular contact allergy. Mechanisms by which mast cells, T cells, eosinophils, cytokines, and other inflammatory mediators and constituents contribute to the unique features of the allergic eye diseases and their link to allergic responses of the airways, have been well documented. Most of the allergic patients have also ocular involvement. The ocular component may be the most prominent and often the major disabling feature of their allergy. These symptoms may be seasonal or perennial. The spectrum of ocular allergy ranges from acute seasonal allergic rhinoconjunctivitis to chronic variants of atopic keratoconjunctivitis. IgE mediated allergy is the most frequent immunopathogenic mechanism present in allergic rhinoconjunctivitis and its comorbid disease link. Knowing the precise and actual immunologic pathogenesis will help assessing and treating the allergic ocular manifestations associated with rhinitis, sinusitis, serous otitis media, atopic dermatitis, and asthma.

Table 2 - Similarities and Differences in Immunopathogenesis of Rhinitis and Asthma

<table>
<thead>
<tr>
<th>Similar Features</th>
<th>Different Features</th>
<th>Sequelae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics and IgE</td>
<td>Abundant vascular supply in nose</td>
<td>Nasal obstruction and rhinitis</td>
</tr>
<tr>
<td>Eosinophils and mast cells</td>
<td>Hyperresponsiveness of bronchial smooth muscle</td>
<td>Bronchospasm of asthma</td>
</tr>
<tr>
<td>Th2 cells and cytokines</td>
<td>Epithelial shedding; Remodelling and fibrosis in lung</td>
<td>Fixed airway obstruction in lung</td>
</tr>
<tr>
<td>Leukotrienes and neuropeptides</td>
<td></td>
<td>Leukotrienes and neuropeptides Release and upregulation of other pro-inflammatory mediators</td>
</tr>
</tbody>
</table>
Table 3 - Evidence Supporting the Rhinitis-Sinusitis-Asthma Connection

- About 80% of asthmatics have rhinitis
- 20-30% of patients with rhinitis have asthma
- Control of rhinitis reduces bronchial hyperresponsiveness
- Rhinitis usually precedes asthma
- Rhinitis is a risk factor for asthma
- Rhinosinusitis worsens asthma
- Patients with rhinitis may present hyperreactive airways
- Asthmatics without rhinitis may exhibit nasal eosinophilic inflammation
- Sinonasal inflammation is a risk for asthma
- Steroid-dependent asthmatics usually have abnormal sinus computed tomography
- Good correlation among abnormal sinus x-rays, blood eosinophilia and asthma symptoms
- Treatment of sinusitis improves asthma

Table 4 - Evidence Supporting the Atopy-Infection Connection*

- Atopy predisposes to viral upper respiratory infections
- Allergic inflammation enhances bacterial sinusitis
- Allergic rhinitis a risk factor for sinusitis

The unified airways disease concept and the understanding of the atopic inflammation as a systemic and continuum ongoing process has been previously discussed\(^\text{16}\). Recent documentation and evidence include the data showing that immunotherapy in children with seasonal allergic rhinitis reduced the subsequent development of asthma\(^\text{17}\) and the fact that treatment of allergic rhinitis decreased the number of asthma emergencies and hospitalizations\(^\text{18}\). Rhinitis is an independent risk factor for adult-onset asthma both among atopic and nonatopic patients and this risk is further increased if rhinitis is complicated with sinusitis\(^\text{19}\). Linkage of upper and lower airway disorders has been proved both in a murine model of allergic rhinitis\(^\text{20}\) and in humans\(^\text{21}\) in whom anti-asthma medications were more frequently prescribed if rhinitis was comorbid\(^\text{22}\). Finally the inflammation of the small airways should also be addressed when treatment of the respiratory tract is contemplated\(^\text{23}\).

Conclusions

Rhinitis, sinusitis, conjunctivitis, and asthma, constitute a comorbid continuum. These entities share linked immunopathogenesis as well as common genetic predisposition. IgE mediated reactions, mast cells, Th2 cells and its cytokines, eosinophils, and different pro-inflammatory mediators (adhesion molecules, chemokines, etc.), participate in this complex pathogenic process, definitely making these disorders a single disease entity, with different forms and degrees of clinical presentation. Many recent global epidemiologic, immunologic, clinical, and therapeutic studies indicate that rhinitis plays an etiologic role in the development of sinusitis and asthma. Allergic rhinitis also influences the clinical course of asthma. Rhinitis should therefore be considered a risk factor and a precursor of asthma. Ideally, treatment should be instituted early to control the inflammatory process of both the upper and lower airways, being justified by the current evidence of the concept of *one respiratory tract
disease entity”.

References

Acknowledgement

To Joseph A. Bellanti, MD, Georgetown University Hospital, Washington, DC, for his construc-tive comments.

Address for correspondence:

Rua Visconde de Piraja N° 303 Suite 603
Ipanema, Rio de Janeiro, RJ
22410-001, Brazil
Phone: 55-21-22872196
Fax: 55-21-22874360
E-mail: gellerm@attglobal.net

Relationships of ocular allergy, nasal allergy, sinusitis and asthma